
15-6-2019

1

1

Remote Document Encryption -
encrypting data for passport holders

1

Eric.Verheul@keycontrols.nl
KeyControls, Radboud Universiteit Nijmegen

TNC2019
18 June 2019

Paper: https://arxiv.org/abs/1704.05647

(*) Research done for Dutch Vehicle Authority (RDW) based on a question from Gert Maneschijn.

2

Agenda

• RDE introduction and demonstration
• RDE outline
• Example RDE applications
• RDE application in (SURF) FileSender
• Implementation of RDE in (SURF) FileSender
• Conclusion

2

mailto:Eric.Verheul@keycontrols.nl
https://arxiv.org/abs/1704.05647

15-6-2019

2

3

3

RDE introduction

4

4

RDE introduction

Data Group 1 (file):
Name, date of birth, …

Data Group 2 (file):
Facial image

Data Group 14 (file):
CA (anti-cloning)
Public Key
“RDE public key”

….

“EF.SOD” (file)
Public Key Certificate

In essence an identity document (passport) is a contactless USB flash drive with some files on it.

15-6-2019

3

5

RDE introduction: crux
5

• Remote Document Encryption (RDE) is a tweak on identity document protocols.

• It allows any party to encrypt data for the holder of an electronic identity document (passport,

identity card, driving license), such that:

• Decryption is only possible with physical possession of the document and takes place inside

the document, typically by the holder.

• RDE allows for 160 bit security on European identity documents where 128 bit is current good

practice, i.e. RDE is 232  4 billion times stronger.

Illustrative application

A hospital wants to send its patients (RDE) encrypted e-mails. The hospital develops an RDE

mobile APP allowing:

a. the hospital reading a RDE “public key certificate” from the identity document for e-mail

encryption,

b. the patient to perform RDE decryption using a PC/mobile device together with her identity

document.

6

Apple support for NFC
6

• Until recently, reading electronic identity documents was limited to Android devices supporting
NFC or devices with a separate contactless card reader.

• Starting with IOS13 (September 2019) Apple will also “open” NFC allowing mobile APPs reading
electronic identity documents, also allowing RDE for iPhones (≥iPhone7).

15-6-2019

4

7

11

Demonstration: RDE decryption
11

Patient receives e-
mail containing RDE
encrypted file

9

Demonstration: user registration
9

• Patient lets her identity
document be read

• Patient registers an e-
mail address

eric.verheul@keycontrols.nl

10

Demonstration: RDE encryption
10

• Hospital wants to send message B to patient.

• Hospital looks up RDE public key P van de houder op en het geregistreerde e-mail

adres.

• Hospital encrypts message B with public key P en e-mails this to patient.

Demonstration ‘RDE secure mail’
7

1. User registration
(one-time only)

2. Encryption of message
by hospital

3. Decryption by patient

The ‘RDE secure email’ use-case consists of three phases.

8

Demonstration: RDE decryption
8

Patient receives
e-mail containing
RDE encrypted file

15-6-2019

5

9

Demonstration: RDE decryption
9

Automatic
Start-up of
RDE APP +
PIN entry

10

Demonstration: RDE decryption
10

RDE decryption

15-6-2019

6

11

Demonstration: RDE decryption
11

RDE plaintext

12

Outline RDE: public key cryptography
12

• One key to close the safe (public key) and another key to open the safe (private key).

• Patient Patty publishes her public key allowing dr. Bob to get hold of it.

• Patient Patty keeps her private key secret.

• Dr. Bob encrypts data for Patty with her public key; only Patty can decrypt this with

her private key.

• To be sure that the public key really belongs to Patty, this key is associated with

Patty’s identity and signed by a “TTP”: a Public Key certificate

Dr. Bob Patty
Public
Key
Certificate

Private
Key

15-6-2019

7

13

Outline RDE: public key cryptography
13

Private
Key

Public key
(and certificate)

14

Outline RDE: public key cryptography
14

Example of (TLS) certificate

15-6-2019

8

15

12

Outline RDE: public key cryptography
12

• One key to close the safe (public key) and another key to open the safe (private key).

• Patient Patty publishes her public key allowing dr. Bob to get hold of it.

• Patient Patty keeps her private key secret.

• Dr. Bob encrypts data for Patty with her public key; only Patty can decrypt this with

her private key.

• To be sure that the public key really belongs to Patty, this key is associated with

Patty’s identity and signed by a “TTP”: a Public Key certificate

Dr. Bob Patty
Public
Key
Certificate

Private
Key

Outline RDE: public key cryptography
15

PatientHospital

• RDE Public Key certificate is
bound to all printed
information:
- First and last name
- Date of birth
- Place of birth
- Facial image (in colour!)

16

RDE registration
16

Public Key +
“certificate” +
email address Private

Key x“Registration”

Patty
(receiver)

Dr. Bob
(sender)

PubK

15-6-2019

9

17

RDE encryption ideally
17

Document
Holder

Public Key +
“certificate”

PubK
1. E=ENCP (K)

ENCK (Message)

Private
Key x

3. E

4. K

5. Decrypt with K
→Message

Dr. Bob
(Sender)

18

17

RDE encryption ideally
17

Document
Holder

Public Key +
“certificate”

PubK
1. E=ENCP (K)

ENCK (Message)

Private
Key x

3. E

4. K

5. Decrypt with K
→Message

Dr. Bob
(Sender)

RDE encryption
18

Unfortunately: passport delivers
different K than the original
But: sending party can predict
what the holder passport will
deliver, namely K’.
RDE Crux: let sending party and
holder use that key, i.e. K’, as
encryption key.

15-6-2019

10

19

17

RDE encryption ideally
17

Document
Holder

Public Key +
“certificate”

PubK
1. E=ENCP (K)

ENCK (Message)

Private
Key x

3. E

4. K

5. Decrypt with K
→Message

Dr. Bob
(Sender)

RDE encryption
19

Unfortunately: passport delivers
different K than the original
But: sending party can predict
what the holder passport will
deliver, namely K’.
RDE Crux: let sending party and
holder use that key, i.e. K’, as
encryption key.

20

RDE encryption!
20

Document
Holder

Public Key +
“certificate”

P

Private
Key x

3. E

4. K’

K’

5. Decrypt with K’
→Message

1. E=ENCP (K)
ENCK’ (Message)

Dr. Bob
(Sender)

(ICAO DOC9303)

15-6-2019

11

21

RDE PIN (two factor encryption)
21

• By additionally encrypting ENCP (K) with
a Personal Encryption Number (PEN) one
gets two factor encryption (possession
and knowledge)

• PEN can only be brute forced with the
passport!

• By making PEN ‘long enough’ the brute
force risk is controllable.

• PEN is an interesting intermediary form
of PIN and password.20

RDE encryption!
20

Document
Holder

Public Key +
“certificate”

P

Private
Key x

3. E

4. K’

K’

5. Decrypt with K’
→Message

1. E=ENCP (K)
ENCK’ (Message)

Dr. Bob
(Sender)

(ICAO DOC9303)

22

Example RDE applications
22

• Secure email
RDE encrypt messages and send them through email. Already tested in pilot in 2018
with a developed APP.

• Secure password managers, e.g. Keepass
Weak spot is the encryption of the password database. In practice this encryption is
based on a guessable password making cloud archiving a bad idea. With RDE the
password database can be adequately encrypted, allowing secure cloud archiving.

• Secure personal health environments
Within Dutch healthcare it is facilitated that patients can have their medical records sent
from their healthcare provider to a Personal Health Environment (PHE). With RDE the
healthcare provider can encrypt the data ensuring that only the patient has access to
them (and not the PHE).

• End-to-end secure SURF FileSender (next slides)
See surffilesender.nl. SURF intents to implement RDE in its Filesender instance in a 2019
pilot. This pilot will be done in cooperation with Dutch government (RDW and RvIG).

http://www.surffilesender.nl/

15-6-2019

12

23

RDE application: end-to-end secure SURF FileSender
23

• FileSender:
– is an open source, web based application for exchanging large files, see

https://filesender.org/
– currently supports the use of a password (decryption key) to encrypt the

exchanged files.
– encryption en decryption takes place in the browser (W3C Web

Cryptography API JavaScript) providing end-to-end security.
• However, the (classical) problem is the password exchange among users in a

secure and user-friendly way.
• To address this problem, SURF and Dutch government (RDW, RvIG) intent to

supplement RDE to the FileSender open source project.
• In this way FileSender can conveniently support the secure exchange of

personal data in education, research, healthcare. It also can facilitate the
GDPR ‘right of access’ at institutions.

24

RDE application: end-to-end secure SURF FileSender
24

Bob.Jansen@amc.nl

Current
Interface
Sender

https://filesender.org/

15-6-2019

13

25

RDE application: end-to-end secure SURF FileSender
25

Encryption Mock-up

Bob.Jansen@amc.nl

RDE
Interface
Sender

26

RDE application: end-to-end secure SURF FileSender
26

Encryption Mock-up

Notification
Email

15-6-2019

14

27

RDE application: end-to-end secure SURF FileSender
27

Decryptie Mock-up

Bob.Jansen@amc.nl

RDE Interface Receiver

28

RDE application: end-to-end secure SURF FileSender
28

Decryptie Mock-up

Bob.Jansen@amc.nl

RDE Interface Receiver

15-6-2019

15

29

RDE application: end-to-end secure SURF FileSender
29

Decryptie Mock-up

Scan QR code with the SURFfilesender APP

RDE Interface Receiver

Bob.Jansen@amc.nl

30

RDE application: end-to-end secure SURF FileSender
30

Decryptie Mock-up

15-6-2019

16

31

RDE application: end-to-end secure SURF FileSender
31

Decryptie Mock-up

RDE Interface Receiver

32

RDE application: end-to-end secure SURF FileSender
32

Decryptie Mock-up

Bob.Jansen@amc.nl

RDE Interface Receiver

15-6-2019

17

33

Implementation of RDE in SURF FileSender
33

• RDE cryptographic basis is symmetrical encryption based on AES in GCM mode.
The AES-GCM operations take place within the internet browsers of the users.

• This is completely supported by the W3C Web Cryptography API
(https://www.w3.org/TR/WebCryptoAPI/): AES-GCM can be called natively
through JavaScript without requiring extra JavaScript libraries.

• By using a suitable AES-GCM configuration, encryption and decryption in (large)
chunks is also easily possible; this is relevant for very large files.

• For the essential part of RDE (ECDH) support for so-called Brainpool elliptic
curves is required. Alas W3C only supports NIST curves as P-256.

• It is therefore required that Brainpool based ECDH is separately implemented,
e.g. by limited use of the Stanford Javascript Crypto Library
(http://bitwiseshiftleft.github.io/sjcl/).

• RDE chunk based setup also usable for current password based Filesender,
allowing sending very large file (>2GB).

34

Conclusion

34

https://www.w3.org/TR/WebCryptoAPI/
http://bitwiseshiftleft.github.io/sjcl/

